Description: Design of Heuristic Algorithms for Hard Optimization by Éric D. Taillard The book features a wealth of illustrations that allow the concepts to be understood at a glance. The book approaches the main metaheuristics from a new angle, deconstructing them into a few key concepts presented in separate chapters: construction, improvement, decomposition, randomization and learning methods. FORMAT Hardcover LANGUAGE English CONDITION Brand New Publisher Description This open access book demonstrates all the steps required to design heuristic algorithms for difficult optimization. The classic problem of the travelling salesman is used as a common thread to illustrate all the techniques discussed. This problem is ideal for introducing readers to the subject because it is very intuitive and its solutions can be graphically represented. The book features a wealth of illustrations that allow the concepts to be understood at a glance. The book approaches the main metaheuristics from a new angle, deconstructing them into a few key concepts presented in separate chapters: construction, improvement, decomposition, randomization and learning methods. Each metaheuristic can then be presented in simplified form as a combination of these concepts. This approach avoids giving the impression that metaheuristics is a non-formal discipline, a kind of cloud sculpture. Moreover, it provides concrete applications of the travelling salesman problem, whichillustrate in just a few lines of code how to design a new heuristic and remove all ambiguities left by a general framework. Two chapters reviewing the basics of combinatorial optimization and complexity theory make the book self-contained. As such, even readers with a very limited background in the field will be able to follow all the content. Back Cover This open access book demonstrates all the steps required to design heuristic algorithms for difficult optimization. The classic problem of the travelling salesman is used as a common thread to illustrate all the techniques discussed. This problem is ideal for introducing readers to the subject because it is very intuitive and its solutions can be graphically represented. The book features a wealth of illustrations that allow the concepts to be understood at a glance. The book approaches the main metaheuristics from a new angle, deconstructing them into a few key concepts presented in separate chapters: construction, improvement, decomposition, randomization and learning methods. Each metaheuristic can then be presented in simplified form as a combination of these concepts. This approach avoids giving the impression that metaheuristics is a non-formal discipline, a kind of cloud sculpture. Moreover, it provides concrete applications of the travelling salesman problem, which illustrate in just a few lines of code how to design a new heuristic and remove all ambiguities left by a general framework. Two chapters reviewing the basics of combinatorial optimization and complexity theory make the book self-contained. As such, even readers with a very limited background in the field will be able to follow all the content. Author Biography Éric D. Taillard is a professor at the University of Applied Sciences and Arts of Western Switzerland, HEIG-VD campus in Yverdon-les-Bains. After completing his studies and obtaining a PhD at the Swiss Federal Institute of Technology in Lausanne, he worked as a researcher at the Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation in Montreal, Canada, and then at the Dalle Molle Institute for Artificial Intelligence in Lugano, Switzerland. He has over 30 years of research experience in the field of metaheuristics. Outside of Switzerland, he has been invited to teach this subject at various universities: Vienna and Graz in Austria, Nantes in France and Hamburg in Germany. Table of Contents Part I: Combinatorial Optimization, Complexity Theory and Problem Modelling.- 1. Elements of Graphs and Complexity Theory.- 2. A Short List of Combinatorial Optimization Problems.- 3. Problem Modelling.- Part II: Basic Heuristic Techniques.- 4. Constructive Methods.- 5. Local Search.- 6. Decomposition Methods.- Part III: Popular Metaheuristics.- 7. Randomized Methods.- 8. Construction Learning.- 9. Local Search Learning.- 10. Population Management.- 11. Heuristics Design.- 12. Codes. Feature This book is open access, which means that you have free and unlimited access Offers step-by-step procedures for the design of heuristic algorithms Contains numerous short illustrative codes for the travelling salesman problem Covers the main metaheuristics in a simple but rigorous way Details ISBN3031137132 Short Title Design of Heuristic Algorithms for Hard Optimization Publisher Springer International Publishing AG Series Graduate Texts in Operations Research Language English Year 2022 ISBN-10 3031137132 ISBN-13 9783031137136 Format Hardcover Subtitle With Python Codes for the Travelling Salesman Problem DOI 10.1007/978-3-031-13714-3 Edition 1st Imprint Springer International Publishing AG Place of Publication Cham Country of Publication Switzerland Pages 287 UK Release Date 2022-10-30 Publication Date 2022-10-30 Illustrations 1 Illustrations, black and white; XV, 287 p. 1 illus. With online files/update. Author Éric D. Taillard Edition Description 1st ed. 2023 Alternative 9783031137167 Audience Professional & Vocational DEWEY 658.4034 We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:139001113;
Price: 100.5 AUD
Location: Melbourne
End Time: 2025-02-06T03:06:49.000Z
Shipping Cost: 11.97 AUD
Product Images
Item Specifics
Restocking fee: No
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 30 Days
Format: Hardcover
Language: English
ISBN-13: 9783031137136
Author: ric D. Taillard
Type: Does not apply
Book Title: Design of Heuristic Algorithms for Hard Optimization