Cragar

FPGA Prototyping by SystemVerilog Examples: Xilinx MicroBlaze MCS SoC Edition

Description: PONG P. CHU, PhD is an Associate Professor in the Department of Electrical Engineering and Computer Science at Cleveland State University, Cleveland, Ohio. He has taught undergraduate and graduate digital systems and computer architecture courses for more than two decades, and has received multiple instructional grants from the National Science Foundation. Preface xxvii Acknowledgments xxxiii PART I BASIC DIGITAL CIRCUITS DEVELOPMENT 1 Gate-Level Combinational Circuit 1 1.1 Introduction 1 1.1.1 Brief history of Verilog and SystemVerilog 1 1.1.2 Book coverage 2 1.2 General description 3 1.3 Basic lexical elements and data types 4 1.3.1 Lexical elements 4 1.3.2 Data types used in the book 5 1.3.3 Number representation 6 1.3.4 Operators 7 1.4 Program skeleton 7 1.4.1 Port declaration 7 1.4.2 Signal declaration 8 1.4.3 Program body 8 1.4.4 Concurrent semantics 9 1.4.5 Another example 10 1.5 Structural description 10 1.6 Top-level signal mapping 13 1.7 Testbench 14 1.8 Bibliographic notes 16 1.9 Suggested experiments 16 1.9.1 Code for gate-level greater-than circuit 17 1.9.2 Code for gate-level binary decoder 17 2 Overview of FPGA and EDA Software 19 2.1 FPGA 19 2.1.1 Overview of a general FPGA device 19 2.1.2 Overview of the Xilinx Artix-7 devices 20 2.2 Overview of the Digilent Nexys 4 DDR board 21 2.3 Development flow 22 2.4 Xilinx Vivado Design Suite 24 2.5 Bibliographic notes 24 2.6 Suggested experiments 24 2.6.1 Gate-level greater-than circuit 24 2.6.2 Gate-level binary decoder 26 3 RT-Level Combinational Circuit 29 3.1 Operators 29 3.1.1 Arithmetic operators 31 3.1.2 Shift operators 31 3.1.3 Relational and equality operators 32 3.1.4 Bitwise, reduction, and logical operators 32 3.1.5 Concatenation and replication operators 33 3.1.6 Conditional operators 34 3.1.7 Operator precedence 35 3.1.8 Expression bit-length adjustment 35 3.1.9 Synthesis of z and x values 36 3.2 Always block for a combinational circuit 38 3.2.1 Overview of always block 39 3.2.2 Procedural assignment 40 3.2.3 Conceptual examples 40 3.3 Coding guidelines 43 3.4 If statement 43 3.4.1 Syntax 43 3.4.2 Examples 44 3.5 Case statement 45 3.5.1 Syntax 45 3.5.2 Examples 46 3.5.3 The casez and casex statements 47 3.5.4 Full case and parallel case 48 3.6 Routing structure of conditional control constructs 49 3.6.1 Priority routing network 49 3.6.2 Multiplexing network 51 3.7 Additional coding guidelines for an always block 52 3.7.1 Common errors in combinational circuit codes 52 3.7.2 Guidelines 56 3.8 Parameter and constant 56 3.8.1 Constant 56 3.8.2 Parameter 58 3.9 Replicated structure 59 3.9.1 Generate-for statement 59 3.9.2 Procedural-for statement 60 3.9.3 Example 60 3.10 Design examples 62 3.10.1 Hexadecimal digit to seven-segment LED decoder 62 3.10.2 Sign-magnitude adder 65 3.10.3 Barrel shifter 68 3.10.4 Simplified floating-point adder 69 3.11 Bibliographic notes 73 3.12 Suggested experiments 73 3.12.1 Multi-function barrel shifter 73 3.12.2 Parameterized barrel shifter 74 3.12.3 Dual-priority encoder 74 3.12.4 BCD incrementor 74 3.12.5 Floating-point greater-than circuit 74 3.12.6 Floating-point and signed integer conversion circuit 74 3.12.7 Enhanced floating-point adder 75 4 Regular Sequential Circuit 77 4.1 Introduction 77 4.1.1 D FF and register 78 4.1.2 Basic block system 78 4.1.3 Code development 79 4.1.4 Sequential circuit coding guidelines and style 79 4.2 HDL code of the FF and register 80 4.2.1 D FF 80 4.2.2 Register 85 4.3 Simple design examples 85 4.3.1 Shift register 85 4.3.2 Binary counter and variant 87 4.4 Testbench for sequential circuits 89 4.5 Case study 93 4.5.1 LED time-multiplexing circuit 93 4.5.2 Stopwatch 101 4.6 Timing and clocking 104 4.6.1 Timing of FF 104 4.6.2 Maximum operating frequency 104 4.6.3 Clock tree 107 4.6.4 GALS system and CDC 107 4.7 Bibliographic notes 108 4.8 Suggested experiments 108 4.8.1 Programmable square wave generator 108 4.8.2 PWM and LED dimmer 108 4.8.3 Rotating square circuit 109 4.8.4 Heartbeat circuit 109 4.8.5 Rotating LED banner circuit 109 4.8.6 Enhanced stopwatch 110 5 FSM 111 5.1 Introduction 111 5.1.1 Mealy and Moore outputs 112 5.1.2 FSM representation 112 5.2 FSM code development 115 5.2.1 Enumerated data type and state assignment 115 5.2.2 Multi-segment code 116 5.2.3 Two-segment code 117 5.3 Design examples 118 5.3.1 Rising-edge detector 118 5.3.2 Debouncing circuit 123 5.3.3 Testing circuit 126 5.4 Bibliographic notes 128 5.5 Suggested experiments 128 5.5.1 Dual-edge detector 128 5.5.2 Early detection debouncing circuit 128 5.5.3 Parking lot occupancy counter 129 6 FSMD 131 6.1 Introduction 131 6.1.1 Single RT operation 132 6.1.2 ASMD chart 132 6.1.3 Decision box with a register 134 6.2 Code development of an FSMD 137 6.2.1 Debouncing circuit based on RT methodology 137 6.2.2 Code with explicit data path components 137 6.2.3 Code with implicit data path components 140 6.2.4 Comparison 142 6.3 Design examples 144 6.3.1 Fibonacci number circuit 144 6.3.2 Division circuit 147 6.3.3 Binary-to-BCD conversion circuit 150 6.3.4 Period counter 153 6.3.5 Accurate low-frequency counter 156 6.4 Bibliographic notes 159 6.5 Suggested experiments 159 6.5.1 Early detection debouncing circuit 159 6.5.2 BCD-to-binary conversion circuit 160 6.5.3 Fibonacci circuit with BCD I/O: design approach 1 160 6.5.4 Fibonacci circuit with BCD I/O: design approach 2 160 6.5.5 Auto-scaled low-frequency counter 161 6.5.6 Reaction timer 161 6.5.7 Babbage difference engine emulation circuit 162 7 RAM and Buffer of FPGA 165 7.1 Embedded memory of FPGA device 165 7.1.1 Memory of an Artix device 166 7.1.2 Memory available in the Nexys 4 DDR board 166 7.2 General description for a RAM-like component 167 7.2.1 Register file 167 7.2.2 Dynamic array indexing operation 169 7.2.3 Key aspects of a RAM module 170 7.2.4 Genuine ROM 171 7.3 FIFO buffer 173 7.3.1 FIFO read configuration 174 7.3.2 Circular queue implementation 175 7.4 HDL templates for memory inference 178 7.4.1 Methods to incorporate memory modules 178 7.4.2 Synchronous dual-port RAM 179 7.4.3 "Simple" synchronous dual-port RAM 180 7.4.4 Synchronous single-port RAM 181 7.4.5 Synchronous ROM 182 7.4.6 BRAM-based FIFO buffer 183 7.4.7 Design considerations 183 7.5 Overview of memory controller 184 7.6 Bibliographic notes 185 7.7 Suggested experiments 186 7.7.1 ROM-based sign-magnitude adder 186 7.7.2 ROM-based temperature conversion 186 7.7.3 FIFO with data width conversion 186 7.7.4 Standard FIFO to FWFT FIFO conversion circuit 187 7.7.5 FIFO buffer with extended status 187 7.7.6 Stack 187 8 Selected Topics of SystemVerilog 189 8.1 Timing model 189 8.1.1 Concurrent constructs 190 8.1.2 Assignment statement 190 8.1.3 Basic model 190 8.1.4 Blocking versus nonblocking assignment 192 8.2 Coding guidelines revisited 194 8.2.1 "Single variable assignment" guideline 195 8.2.2 "Blocking assignment for combinational circuit" guideline 195 8.2.3 "Nonblocking assignment for register" guideline 197 8.3 Alternative coding style 198 8.3.1 First coding style revisited 198 8.3.2 Sequential circuit with mixed blocking and nonblocking assignments 199 8.3.3 Combined coding style 201 8.3.4 Summary 206 8.4 Data types 206 8.4.1 The net and variable types 206 8.4.2 The logic data type 207 8.4.3 Limitation of the logic data type 208 8.4.4 New data types in SystemVerilog 208 8.5 Use of the signed data type 209 8.5.1 Overview 209 8.5.2 Signed number conversion 210 8.6 Bibliographic notes 211 8.7 Suggested experiments 211 8.7.1 Shift register with blocking and nonblocking assignments 211 8.7.2 Alternative coding style for the BCD counter 212 8.7.3 Alternative coding style for the FIFO buffer 212 8.7.4 Alternative coding style for the Fibonacci circuit 212 8.7.5 Dual-mode comparator 212 PART II EMBEDDED SOC I: VANILLA FPRO SYSTEM 9 Overview of Embedded SoC Systems 215 9.1 Embedded SoC 215 9.1.1 Overview of embedded systems 215 9.1.2 FPGA-based SoC 216 9.1.3 IP cores 216 9.2 Development flow of the embedded SoC 217 9.2.1 Hardware-software partition 217 9.2.2 Hardware development flow 217 9.2.3 Software development flow 219 9.2.4 Physical implementation and test 219 9.2.5 Custom IP core development 219 9.3 FPro SoC Platform 220 9.3.1 Motivations 220 9.3.2 Platform hardware organization 221 9.3.3 Platform software organization 223 9.3.4 Modified development flow 224 9.4 Adaptation on the Digilent Nexys 4 DDR board 224 9.5 Portability 226 9.5.1 Processor Module and Bridge 226 9.5.2 MMIO subsystem 227 9.5.3 Video subsystem 227 9.6 Organization 228 9.7 Bibliographic notes 228 10 Bare Metal System Software Development 231 10.1 Bare metal system development overview 231 10.1.1 Desktop-like system versus bare metal system 231 10.1.2 Basic embedded program architecture 232 10.2 Memory-mapped I/O 233 10.2.1 Overview 233 10.2.2 Memory alignment 234 10.2.3 I/O register map 234 10.2.4 I/O address space of the FPro system 234 10.3 Direct I/O Register Access 235 10.3.1 Review of C pointer 235 10.3.2 C pointer for I/O register 236 10.4 Robust I/O register access 237 10.4.1 chu_io_map.h and chu_io_map.svh 237 10.4.2 inttypes.h 238 10.4.3 chu_io_rw.h 239 10.5 Techniques for low-level I/O operations 241 10.5.1 Bit manipulation 241 10.5.2 Packing and unpacking 242 10.6 Device Drivers 243 10.6.1 Overview 243 10.6.2 GPO and GPI drivers 243 10.6.3 Timer driver 245 10.6.4 UART driver 247 10.7 FPro utility routines and directory structure 248 10.7.1 Minimal hardware requirements 248 10.7.2 Utility routines 248 10.7.3 Directory structure 251 10.8 Test program 252 10.8.1 IP core verification routine 252 10.8.2 Programming with limited memory 252 10.8.3 Test function integration 252 10.8.4 Test program for the vanilla FPro system 253 10.8.5 Implementation 254 10.9 Bibliographic notes 255 10.10 Suggested experiments 255 10.10.1 Chasing LEDs 255 10.10.2 Collision LEDs 256 10.10.3 Pulse width modulation 256 10.10.4 System time display 256 11 FPro Bus Protocol and MMIO Slot Specification 257 11.1 FPro bus 257 11.1.1 Overview of the bus 257 11.1.2 SoC interconnect 258 11.1.3 FPro bus protocol specification 259 11.2 Interface with the bus 260 11.2.1 Introduction 260 11.2.2 Write interface and decoding 261 11.2.3 Read interface and multiplexing 263 11.2.4 FIFO buffer as an I/O register 264 11.2.5 Timing consideration 265 11.3 MMIO I/O core 266 11.3.1 MMIO slot interface specification 266 11.3.2 Basic MMIO I/O core construction 268 11.3.3 GPO and GPI cores 269 11.4 Timer core development 270 11.4.1 Custom logic 270 11.4.2 Register map 271 11.4.3 Wrapping circuit for the slot interface 271 11.5 MMIO controller 272 11.5.1 chu_io_map.svh file 273 11.5.2 HDL code 273 11.5.3 Vanilla MMIO subsystem 275 11.6 MCS I/O bus and bridge 278 11.6.1 Overview of Xilinx MicroBlaze MCS 278 11.6.2 MicroBlaze MCS I/O bus 278 11.6.3 MCS-to-FPro bridge 279 11.7 Vanilla FPro system construction 281 11.8 Bibliographic notes 282 11.9 Suggested experiments 283 11.9.1 FPro bus with a byte-lane enable signal 283 11.9.2 Seven-segment control with a GPO core 283 11.9.3 GPIO core 283 11.9.4 Blinking-LED core 284 11.9.5 Timer core with a programmable period 284 11.9.6 Timer core with a run-once mode 284 12 UART Core 287 12.1 Introduction 287 12.1.1 Overview of serial communication 287 12.1.2 Overview of the UART 288 12.1.3 Oversampling procedure 288 12.2 UART construction 289 12.2.1 Conceptual design 289 12.2.2 Baud rate generator 290 12.2.3 UART receiver 291 12.2.4 UART transmitter 293 12.2.5 Top-level HDL code 295 12.3 UART core development 296 12.3.1 Register map 296 12.3.2 Wrapping circuit for the slot interface 297 12.4 UART driver 298 12.4.1 Class definition 299 12.4.2 Basic methods 300 12.4.3 ASCII code 301 12.4.4 Display methods 303 12.4.5 Test 305 12.5 Additional project ideas 305 12.5.1 Original serial port 305 12.5.2 Emulated serial port 305 12.5.3 Direct connection 306 12.5.4 USB-to-UART adaptor 306 12.5.5 Wireless adaptor 307 12.6 Bibliographic notes 308 12.7 Suggested experiments 308 12.7.1 UART-controlled chasing LEDs 308 12.7.2 Alternative read configuration 308 12.7.3 UART controller with a parity bit 308 12.7.4 UART core with an error status 309 12.7.5 Configurable UART core 309 12.7.6 UART core with automatic baud rate detection 309 12.7.7 UART core with enhanced automatic baud rate detection 310 12.7.8 UART core with an automatic baud rate and a parity detection circuit 310 PART III EMBEDDED SOC II: BASIC I/O CORES 13 Xilinx XADC Core 313 13.1 Overview of XADC 313 13.1.1 Block diagram 313 13.1.2 Configuration 314 13.2 XADC core development 315 13.2.1 XADC instantiation 315 13.2.2 Basic wrapping circuit design 316 13.2.3 Register map 318 13.2.4 HDL code 318 13.3 XADC core device driver 320 13.3.1 Class definition 320 13.3.2 Class implementation 321 13.3.3 Testing for the XADC core 322 13.4 Sampler FPro system 323 13.4.1 Testing procedure of an FPro core 323 13.4.2 System configuration 323 13.4.3 Hardware derivation 324 13.4.4 Software verification program 331 13.5 Additional project ideas 332 13.6 Bibliographic notes 333 13.7 Suggested experiments 333 13.7.1 Real-time voltage display 333 13.7.2 Potentiometer-controlled chasing LEDs 333 13.7.3 Potentiometer-controlled LED dimmer 333 13.7.4 Enhanced wrapping circuit: part I 333 13.7.5 Enhanced wrapping circuit: part II 333 14 Pulse Width Modulation Core 335 14.1 Introduction 335 14.1.1 PWM as analog output 335 14.1.2 Main characteristics 336 14.2 PWM design 336 14.2.1 Basic design 336 14.2.2 Enhanced design 337 14.3 PWM core development 339 14.3.1 Register map 339 14.3.2 Wrapped PWM circuit 340 14.4 PWM driver 341 14.4.1 Class definition 341 14.4.2 Class implementation 342 14.5 Testing 343 14.6 Project ideas 343 14.7 Suggested experiments 345 14.7.1 Police dash light 345 14.7.2 Rainbow night light 345 14.7.3 Enhanced PWM core: part I 345 14.7.4 Enhanced PWM core: part II 346 14.7.5 Enhanced GPIO core 346 14.7.6 Servo motor driver 346 15 Debouncing Core and LED-Mux Core 347 15.1 Debouncing Core 347 15.1.1 Multi-bit debouncing circuit 347 15.1.2 Register map and the slot wrapping circuit 350 15.1.3 Driver 351 15.1.4 Test 352 15.2 LED-mux core 352 15.2.1 Eight-digit seven-segment LED display multiplexing circuit 352 15.2.2 Register map and the slot wrapping circuit 354 15.2.3 Driver 355 15.2.4 Test 358 15.3 Project ideas 358 15.4 Suggested experiments 360 15.4.1 Area comparison of two debouncing circuits 360 15.4.2 Enhanced debouncing core: part I 360 15.4.3 Enhanced debouncing core: part II 360 15.4.4 Rotating square pattern revisited 360 15.4.5 Heartbeat pattern revisited 360 15.4.6 Stopwatch 360 15.4.7 Enhanced LED-mux core 361 16 SPI Core 363 16.1 Overview 363 16.1.1 Conceptual architecture 364 16.1.2 Multiple-device configuration 364 16.1.3 Basic timing 366 16.1.4 Operation modes 367 16.1.5 Undefined aspects 368 16.2 SPI controller 369 16.2.1 Basic design 369 16.2.2 FSMD construction 370 16.2.3 HDL implementation 370 16.3 SPI core development 374 16.3.1 Register map 374 16.3.2 Wrapping circuit for the slot interface 374 16.4 SPI driver 376 16.4.1 Class definition 376 16.4.2 Class implementation 377 16.5 Test 378 16.5.1 ADXL362 accelerometer 378 16.5.2 Test program 380 16.6 Project ideas 381 16.6.1 SD card 381 16.6.2 TFT LCD module 382 16.7 Bibliographic notes 382 16.8 Suggested experiments 382 16.8.1 Inclination sensing 382 16.8.2 "Tapping" detection 382 16.8.3 ADXL362 C++ class 383 16.8.4 Enhanced SPI controller: part I 383 16.8.5 Enhanced SPI controller: part II 383 16.8.6 "Automatic-read" ADXL362 wrapper: part I 383 16.8.7 "Automatic-read" ADXL362 wrapper: part II 384 16.8.8 Flash memory access 384 16.8.9 SPI slave controller: part I 384 16.8.10 SPI slave controller: part II 385 17 I²C Core 387 17.1 Overview 387 17.1.1 Electrical characteristics 388 17.1.2 Basic bus protocol 388 17.1.3 Basic timing 389 17.1.4 Additional features 390 17.2 I²C controller 391 17.2.1 Basic design 391 17.2.2 Conceptual FSMD construction 391 17.2.3 Output control logic 394 17.2.4 I²C bus clock generation 394 17.2.5 HDL implementation 395 17.3 I²C core development 400 17.3.1 Register map 400 17.3.2 Wrapping circuit for the slot interface 400 17.4 I²C driver 401 17.4.1 Class definition 401 17.4.2 Class implementation 402 17.5 Test 405 17.5.1 ADT7420 temperature sensor 405 17.5.2 Test program 406 17.6 Project idea 406 17.7 Bibliographic notes 407 17.8 Suggested experiments 407 17.8.1 Thermometer 407 17.8.2 ADT7420 C++ class 407 17.8.3 Enhanced I²C core 408 17.8.4 "Automatic-read" ADT7420 wrapper 408 17.8.5 I²C slave controller: part I 408 17.8.6 I²C slave controller: part II 408 18 PS2 Core 409 18.1 Introduction 409 18.1.1 PS2-device-to-host communication protocol and timing 410 18.1.2 Host-to-PS2-device communication protocol and timing 410 18.2 PS2 controller 411 18.2.1 Conceptual design 411 18.2.2 PS2 receiving subsystem 411 18.2.3 PS2 transmitting subsystem 415 18.2.4 Complete PS2 system 419 18.3 PS2 core development 420 18.3.1 Register map 420 18.3.2 Wrapping circuit for the slot interface 421 18.4 PS2 driver 422 18.4.1 Class definition 422 18.4.2 Lower layer methods 422 18.4.3 PS2 initialization routine 423 18.4.4 Keyboard routine 425 18.4.5 Mouse routine 428 18.5 Test 430 18.6 Bibliographic notes 431 18.7 Suggested experiments 431 18.7.1 PS2 receiving subsystem with watchdog timer 431 18.7.2 Keyboard-controlled LED flashing circuit 432 18.7.3 Enhanced keyboard driver routine: part I 432 18.7.4 Enhanced keyboard driver routine: part II 432 18.7.5 Remote-mode mouse driver 432 18.7.6 Scroll-wheel mouse driver 432 19 Sound I: DDFS Core 433 19.1 Introduction 433 19.2 Design and implementation 434 19.2.1 Direct synthesis of a digital waveform 434 19.2.2 Direct synthesis of an unmodulated analog waveform 435 19.2.3 Direct synthesis of a modulated analog waveform 436 19.3 Fixed-point arithmetic 437 19.4 DDFS construction 438 19.5 DAC (digital-to-analog converter) 440 19.5.1 Conceptual design 440 19.5.2 HDL implementation 441 19.6 DDFS core development 442 19.6.1 Register map 442 19.6.2 Wrapping circuit for the slot interface 443 19.7 DDFS driver 444 19.7.1 Class definition 444 19.7.2 Class implementation 445 19.8 Test 447 19.9 Bibliographic notes 448 19.10 Suggested experiments 448 19.10.1 Quadrature phase carrier generation 448 19.10.2 Reduced-size phase-to-amplitude lookup table 448 19.10.3 Additive harmonic synthesis 449 19.10.4 Simple function generator 449 19.10.5 Arbitrary waveform generator 449 19.10.6 Sample-based synthesis 449 20 Sound II: ADSR Core 451 20.1 Introduction 451 20.2 ADSR envelope generator 452 20.2.1 Conceptual FSMD design 453 20.2.2 ASMD chart 453 20.2.3 HDL implementation 455 20.3 ADSR core development 457 20.3.1 Register map 457 20.3.2 Wrapped ADSR circuit 458 20.4 ADSR driver 460 20.4.1 Class definition 460 20.4.2 Configuration methods 461 20.4.3 calc note freq() method 463 20.4.4 play note() method 465 20.5 Test 465 20.6 Project idea 466 20.7 Bibliographic notes 467 20.8 Suggested experiments 467 20.8.1 RTTTL music player 467 20.8.2 ADSR envelope testing 467 20.8.3 Pushbutton piano 467 20.8.4 Keyboard piano 468 20.8.5 Keyboard recorder 468 20.8.6 Real-time mode ADSR generator 468 20.8.7 Real-time mode pushbutton piano 468 20.8.8 Merged DDFS and ADSR core 468 20.8.9 ADSR core with an automatic play FIFO buffer 468 20.8.10 ADSR core for frequency modulation 468 PART IV EMBEDDED SOC III: VIDEO CORES 21 Introduction to the Video System 471 21.1 Introduction to a video display 471 21.1.1 Conceptual video display 471 21.1.2 VGA interface 472 21.2 Stream interface 473 21.2.1 Random-access interface versus stream interface 473 21.2.2 Flow control of the stream interface 473 21.3 VGA synchronization 475 21.3.1 Basic operation of a CRT monitor 475 21.3.2 Horizontal synchronization 476 21.3.3 Vertical synchronization 478 21.3.4 Pixel clock rate 479 21.3.5 VGA synchronization circuit 480 21.4 Bar test-pattern generator 483 21.5 Color-to-grayscale conversion circuit 485 21.6 Demo video system 486 21.7 Advanced video standards 488 21.8 Bibliographic notes 489 21.9 Suggested experiments 489 21.9.1 Horizontal bar test-pattern generator 489 21.9.2 Color channel selection circuit 489 21.9.3 Enhanced color-to-grayscale conversion circuit 489 21.9.4 Square test-pattern generator: part I 489 21.9.5 Square test-pattern generator: part II 489 21.9.6 Square test-pattern generator: part III 490 21.9.7 Square test-pattern generator: part IV 490 22 FPro Video Subsystem 491 22.1 Organization of the video subsystem 491 22.1.1 Overview 491 22.1.2 Video controller 493 22.1.3 HDL of the video controller 494 22.2 FPro video IP core 495 22.2.1 Basic functionality 495 22.2.2 Blending operation 496 22.2.3 Core architecture 498 22.2.4 Alternative core partition 500 22.3 Example video cores 500 22.3.1 Bar test-pattern generator core 500 22.3.2 Color-to-grayscale conversion core 503 22.3.3 "Dummy" core 504 22.4 FPro video synchronization core 504 22.4.1 Line buffer 505 22.4.2 Enhanced video synchronization circuit 508 22.4.3 HDL code 511 22.5 Daisy video subsystem 512 22.5.1 Subsystem overview 512 22.5.2 Interface to the video synchronization core 513 22.5.3 HDL code 513 22.5.4 Timing and performance considerations 517 22.6 Vanilla daisy FPro system 517 22.6.1 Clock management core 518 22.6.2 Updated chu_io_map.svh 519 22.6.3 HDL code 519 22.7 Video driver and test program 521 22.7.1 Updated chu_io_map.h and chu_io_rw.h files 521 22.7.2 GPV core driver 522 22.7.3 Test program 523 22.8 Bibliographic notes 524 22.9 Suggested experiments 525 22.9.1 Color channel selection core 525 22.9.2 Enhanced color-to-grayscale conversion core 525 22.9.3 Square test-pattern generator core 525 22.9.4 Alpha blending circuit 525 22.9.5 "Highlight" core 525 22.9.6 SVGA synchronization core 526 22.9.7 Configurable video synchronization core 526 22.9.8 Pipelined video subsystem 526 23 Sprite Core 527 23.1 Introduction 527 23.2 Basic design 528 23.2.1 Sprite RAM 528 23.2.2 In-region comparison circuit 529 23.3 Mouse pointer core 530 23.3.1 Pointer sprite RAM 530 23.3.2 Pixel generation circuit 531 23.3.3 Top-level design 532 23.4 "Ghost" character core 534 23.4.1 Multiple images and animation 534 23.4.2 Overview of the palette scheme 535 23.4.3 Ghost sprite RAM and the palette circuit 535 23.4.4 Animation timing circuit 537 23.4.5 Pixel generation circuit 537 23.4.6 Top-level design 540 23.5 Sprite core driver and test program 541 23.5.1 Sprite core driver 541 23.5.2 Test program 543 23.6 Bibliographic notes 544 23.7 Suggested experiments 544 23.7.1 Mouse pointer control with PS2 core 544 23.7.2 Emulated ghost core 544 23.7.3 Palette circuit for the mouse pointer sprite 544 23.7.4 Sprite scaling circuit 544 23.7.5 Portrait mode display 545 23.7.6 Multiple-object generation 545 23.7.7 Animation speed control 545 23.7.8 Imitated blinking LED: part I 545 23.7.9 Imitated blinking LED: part II 545 23.7.10 Imitated blinking LED: part III 546 24 On-Screen-Display Core 547 24.1 Introduction to tile graphics 547 24.2 Basic OSD design 549 24.2.1 Text-mode display 549 24.2.2 Font ROM 550 24.2.3 Tile RAM 550 24.2.4 Basic organization 551 24.3 OSD core 552 24.3.1 Font ROM 552 24.3.2 Pixel generation circuit 553 24.3.3 Top-level design 555 24.4 OSD core driver and test program 557 24.4.1 OSD core driver 557 24.4.2 Testing program 558 24.5 Bibliographic notes 559 24.6 Suggested experiments 559 24.6.1 Rotating banner 559 24.6.2 Text console 559 24.6.3 Underline for the cursor 559 24.6.4 Portrait-mode display 560 24.6.5 Font scaling circuit: part I 560 24.6.6 Font scaling circuit: part II 560 24.6.7 Extended font 560 24.6.8 Tile-based ghost core 560 25 VGA Frame Buffer Core 561 25.1 Overview 561 25.2 Frame buffer core 562 25.2.1 FPGA memory consideration 562 25.2.2 Video memory module 562 25.2.3 Address translation 563 25.2.4 Pixel generation circuit 564 25.2.5 Register map 566 25.2.6 Top-level HDL code 566 25.3 Driver and test program 567 25.3.1 Frame buffer core driver 567 25.3.2 Geometrical modeling 568 25.3.3 Test program 570 25.4 Project ideas 570 25.5 Bibliographic notes 572 25.6 Suggested experiments 572 25.6.1 Virtual prototyping board panel 572 25.6.2 Virtual analog wall clock 572 25.6.3 Geometrical model functions 572 25.6.4 Simulated "Etch a Sketch" toy 572 25.6.5 Frame buffer core with 3-bit color depth 573 25.6.6 Frame buffer core with 1-bit color depth 573 25.6.7 QVGA frame buffer core 573 25.6.8 Line drawing hardware accelerator 573 25.6.9 Bidirectional frame buffer access: part I 573 25.6.10 Bidirectional frame buffer access: part II 573 PART V EPILOGUE 26 What's Next 577 References 581 Appendix A: Tutorials 585 A.1 Overview of Xilinx Vivado IDE 585 A.2 Short tutorial on Vivado hardware development 589 A.2.1 Create a design project 590 A.2.2 Add or create Xilinx IP core instances 591 A.2.3 Add or create HDL design files 591 A.2.4 Add a constraint file 592 A.2.5 Perform synthesis, implementation, and bitstream generation 593 A.2.6 Program an FPGA device 593 A.3 Short tutorial on Vivado simulation 594 A.3.1 Add or create HDL testbench 596 A.3.2 Perform initial simulation 596 A.3.3 Customize waveform display 597 A.4 Tutorial on IP instantiation 597 A.4.1 Dual-clock FIFO core via HDL templates 598 A.4.2 IP Catalog utility 599 A.4.3 Generate a MicroBlaze MCS component 600 A.4.4 XADC IP core 601 A.4.5 Clock management IP core 602 A.5 Short tutorial on FPro system development 604 A.5.1 Derive FPro system hardware 605 A.5.2 Export hardware configuration 605 A.5.3 Derive software 605 A.5.4 Embed elf file into FPGA's memory module and regenerate bitstream 608 A.5.5 Set up the terminal emulator program 610 A.5.6 Program an FPGA device 610 A.6 Bibliographic notes 611 Topic Index 613

Price: 75.04 GBP

Location: Gloucester

End Time: 2024-10-30T23:35:34.000Z

Shipping Cost: 30.98 GBP

Product Images

FPGA Prototyping by SystemVerilog Examples: Xilinx MicroBlaze MCS SoC EditionFPGA Prototyping by SystemVerilog Examples: Xilinx MicroBlaze MCS SoC Edition

Item Specifics

Return postage will be paid by: Buyer

Returns Accepted: Returns Accepted

After receiving the item, your buyer should cancel the purchase within: 60 days

Return policy details:

EAN: 9781119282662

UPC: 9781119282662

ISBN: 9781119282662

MPN: N/A

Book Title: FPGA Prototyping by SystemVerilog Examples: Xilinx

Item Length: 25.7 cm

Item Height: 254 mm

Item Width: 178 mm

Author: Pong P. Chu

Publication Name: Fpga Prototyping by Systemverilog Examples: Xilinx Microblaze Mcs Soc Edition

Format: Hardcover

Language: English

Publisher: John Wiley & Sons AND Sons LTD

Subject: Computer Science

Publication Year: 2018

Type: Textbook

Item Weight: 1255 g

Number of Pages: 656 Pages

Recommended

Arduino Board Mega 2560 Specs  Open-Source Electronics Prototyping Platform—13
Arduino Board Mega 2560 Specs Open-Source Electronics Prototyping Platform—13

$34.99

View Details
Nano Minimalist FPGA Development Board Straight Insert Breadboard Type-C/USB
Nano Minimalist FPGA Development Board Straight Insert Breadboard Type-C/USB

$15.14

View Details
Vintage Prototyping Circuit Logic Board Electronics Computer Lot
Vintage Prototyping Circuit Logic Board Electronics Computer Lot

$87.75

View Details
1PCS Nano Minimalist FPGA Development Board Straight Insert Breadboard NEW
1PCS Nano Minimalist FPGA Development Board Straight Insert Breadboard NEW

$8.74

View Details
Digilent Xilinx Artix-7 Basys 3 FPGA Board
Digilent Xilinx Artix-7 Basys 3 FPGA Board

$124.50

View Details
XMF3 XILINX FPGA MODULE
XMF3 XILINX FPGA MODULE

$40.00

View Details
FPGA Prototyping by SystemVerilog Examples by Pong Chu
FPGA Prototyping by SystemVerilog Examples by Pong Chu

$76.95

View Details
Insight FPGA-10 Vertex IV DS-BD-MBEXP2 P160 Prototype PCB Board Module
Insight FPGA-10 Vertex IV DS-BD-MBEXP2 P160 Prototype PCB Board Module

$144.94

View Details
Prototyping board for Digilent S6/S7/A7 CMOD FPGA modules
Prototyping board for Digilent S6/S7/A7 CMOD FPGA modules

$49.00

View Details
FPGA-Based Prototyping Methodology Manual: Best Practices in Design-For-Prototyp
FPGA-Based Prototyping Methodology Manual: Best Practices in Design-For-Prototyp

$12.66

View Details